☑ kyle.hatch@tri.global • ♦ khatch31.github.io

EDUCATION

Stanford University

M.S. in Computer Science Graduated: June 2023
Artificial Intelligence Track GPA: 4.05

Coterminal Master's Program

Stanford University Stanford, CA

B.S. with honors in Computer Science Graduated: June 2022
Artificial Intelligence Track GPA: 3.78

Honors/Awards

Completed undergraduate CS Honors thesis.

RESEARCH EXPERIENCE

Research Focuses: Robot Learning, Reinforcement Learning, Generative Models

Toyota Research Institute (TRI)

AI Resident in the Machine Learning Division

July 2023 - Present

Stanford, CA

Research focuses on leveraging diffusion models and vision-language-action models (VLAs) for robotic manipulation. Lead a project on utilizing language-conditioned image and video diffusion models to generate subgoals for robotic manipulation tasks. First author paper on this project under review at the IEEE International Conference on Robotics and Automation (ICRA) 2025. Currently working on co-training VLAs using tokenized video prediction on Internet video data of humans manipulating objects. Learned key skills such as working with large-scale diffusion and transformer-based models, and structuring data loaders and models for multi-node, distributed training.

Stanford IRIS Lab - Prof. Chelsea Finn

Undergraduate/Master's student

October 2020 — *June* 2023

Worked on addressing three key limitations in scaling offline reinforcement learning methods to realistic robot applications: 1) learning from play data/autonomously collected robot data without reward labels 2) pre-training on offline data and then fine-tuning online 3) developing realistic simulated benchmarks. Three first/co-first author publications:

- D5RL: a benchmark to evaluate offline RL and offline-to-online fine-tuning methods on visually diverse, realistic, simulated robotics tasks. Co-first author on paper under review at the International Conference on Learning Representations (ICLR) 2024.
- MOTO: a model-based reinforcement learning method designed for efficient offline-to-online finetuning for vision-based manipulation tasks. Co-first author on paper in the Conference on Robot Learning (CoRL) 2023.
- LAEO: an offline reinforcement learning method using contrastive learning for data without reward labels. First author on paper in the Learning for Dynamics & Control Conference (L4DC) 2023.

Stanford Intelligent Systems Laboratory (SISL) - Prof. Mykel Kochenderfer

Undergraduate student

June 2019 — *March* 2021

Worked on using machine learning and reinforcement learning techniques to improve collision avoidance in autonomous vehicles and unmanned aerial vehicles UAVs. Two first/co-first author

publications:

- A method to learn 3D velocity maps from radar data for autonomous vehicles. Co-first author on paper in the IEEE International Conference on Intelligent Robots and Systems (IROS) 2021.
- A collision avoidance system for autonomous drones using monocular vision and deep reinforcement learning. First author on paper in the American Institute of Aeronautics and Astronautics (AIAA) SciTech Forum 2021.

Johns Hopkins University Applied Physics Laboratory (APL)

Research Intern

June 2020 — *May* 2021

Developed a reinforcement learning-based method to autonomously respond to cybersecurity threats on industrial control systems. Second author on paper in the International Conference on Dependable Systems and Networks (DSN'22), 2022.

Stanford Network Analysis Project (SNAP) - Prof. Jure Leskovec

Undergraduate student

September 2019 — June 2020

Conducted research on using graph convolutional networks to predict interactions between microbes in the human gastrointestinal tract.

PUBLICATIONS

Published/Accepted

Kolev, V.*, Rafailov, R.*, **Hatch, K. B.,** Wu, J., and Finn, C., "Efficient Imitation Learning with Conservative World Models," *Learning for Dynamics & Control Conference* (*L4DC*), 2024. PDF

Rafailov, R.*, **Hatch, K. B.***, Singh, A., Smith, L., Kumar, A., Kostrikov, I., Hansen-Estruch, P., Kolev, V., Ball, P., Wu, J., Finn, C., and Levine, S., "D5RL: Diverse Datasets for Data-Driven Deep Reinforcement Learning," *Reinforcement Learning Conference* (*RLC*), 2024. PDF

Rafailov, R.*, **Hatch, K. B.***, Kolev, V., Martin, J., Phielipp, M., and Finn, C., "MOTO: Offline to Online Fine-tuning for Model-Based Reinforcement Learning," *Conference on Robot Learning (CoRL)*, 2023. PDF Website

Hatch, K. B., Eysenbach, B., Yu, T., Rafailov, R., Salakhutdinov, R., Levine, S., and Finn, C., "Contrastive Example-Based Control," *Learning for Dynamics & Control Conference (L4DC)*, 2023. PDF Website

Zhou, G., Dean, V., Srirama, M. K., Rajeswaran, A., Pari, J., **Hatch, K. B.,** Jain, A., Yu, T., Abbeel, P., Pinto, L., Finn, C., and Gupta, A., "Train Offline, Test Online: A Real Robot Learning Benchmark," 2023 IEEE International Conference on Robotics and Automation (ICRA), 2023. PDF Website

Mern, J., **Hatch, K.,** Silva, R., Hickert, C., Sookoor, T., and Kochenderfer, M. J., "Autonomous Attack Mitigation for Industrial Control Systems," *International Conference on Dependable Systems and Networks* (*DSN*'22), 2022. PDF

Senanayake, R.*, **Hatch, K.*,** Zheng, J., and Kochenderfer, M. J., "3D Radar Velocity Maps for Uncertain Dynamic Environments," *IEEE International Conference on Intelligent Robots and Systems (IROS)*, 2021. PDF Presentation

Hatch, K., Mern, J., and Kochenderfer, M. J., "Obstacle Avoidance Using a Monocular Camera," *American Institute of Aeronautics and Astronautics (AIAA) SciTech Forum*, 2021. PDF Presentation

Under Review

Hatch, K., Balakrishna, A., Mees, O., Nair, S., Wulfe, B., Itkina, M., Eysenbach, B., Levine, S., Kollar,

T., and Burchfiel, B., "GHIL-Glue: Hierarchical Control with Filtered Subgoal Images," 2025 IEEE International Conference on Robotics and Automation (ICRA), 2025. PDF Website

*denotes equal contribution

OUTREACH

Breakthrough Silicon Valley (BTSV)

San Jose, CA

Volunteer tutor

November 2023 – *April* 2024

Provide homework support to high school students who are on track to becoming first-generation college students. Primarily assist with mathematics.

East Palo Alto Stanford Academy (EPASA)

Stanford, CA

Volunteer tutor

October 2018 – *March* 2020

Provided homework support to seventh and eighth grade students from low-income backgrounds in mathematics and English, and helped students to develop effective study skills.

Stanford 1st Ward Volunteer Tutoring Program

Stanford, CA

Volunteer tutor

September 2017 – June 2019

Provided homework support to K-12 students in mathematics, reading, and English.

SKILLS

Machine Learning Frameworks

Cloud Computing

Reinforcement Learning Tools

Simulation Tools

Programming Languages

JAX, Pytorch, Tensorflow 2.0

Amazon SageMaker

deepmind-acme, TF-Agents, RLkit, JAXRL

Mujoco, Microsoft AirSim

Python, C++